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Stability of the conduction regime of natural convection 
in a tall vertical annulus 
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Department of Mechanical Engineering, The Ohio State University, 

Columbus, Ohio 43210 

(Received 21 September 1979 and in revised form 25 January 1980) 

The stability of natural convection in a vertical annular enclosure has been studied by 
the linear theory. It was found that for all Prandtl numbers the instability sets in as a 
wave travelling upward. For low Prandtl numbers, the larger the curvature the more 
stable the flow; the reverse is true for high Prandtl numbers. The theoretigal predic- 
tions of the mode of instability were verified for air. A multicellular flow pattern was 
observed to drift upward with the predicted wave speed. The measured wavelength 
of the cells is in good agreement with the linear analysis. 

1. Introduction 
This article is on stability of convection in a tall annular enclosure with the inner wall 

heated and the outer one cooled. The temperature difference between the side walls 
causes the fluid inside the cavity to circulate, with fluid rising adjacent to the hot wall 
and sinking next to  the cold one. The motion can be shown to  depend on the Rayleigh 
number, the Prandtl number, the aspect ratio h of the cavity (the height to width 
ratio), and the ratio of the inner and outer radii. When the radius ratio approaches 
unity the cavity becomes rectangular. In this case, from the studies of Batchelor 
(1954), Eckert & Carlson (1961), Elder (1965), and Gill (1966), the following trends are 
known to hold. 

Near the mid-height of a tall enclosure the flow is parallel to the side walls for suffi- 
ciently small Rayleigh numbers. This parallel-flow region extends further towards the 
ends of the enclosure the smaller the Rayleigh number or the larger the aspect ratio. 
When the flow is parallel, heat is transferred across the gap by conduction alone, and 
the flow is said to be in the conduction regime. Gill & Davey (1969) proposed that this 
will be so whenever Ra < 300h. It is not clear how low a value h may have while this 
equation remains valid, but to produce a flow which turns around and becomes parallel 
it would seem that h should be a t  least, say, 3. 

An increase in the temperature difference across a narrow cavity filled wit,h a low- 
Prandtl-number fluid causes the parallel flow to undergo a transition to a multi- 
cellular flow pattern. If the aspect ratio is low however, and the Prandtl number is 
large, the vertical flow begins to take the form of boundary layers near the side walls. 
In this case the flow is said to enter a convection regime in which, in addition to the 
boundary layers, a stable vertical temperature gradient develops in the core of the 
flow. A further increase in the temperature difference causes the flow in the convection 
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FIGURE 1. Schematic of the annular geometry. 

regime to  undergo a transition to a multicellular flow as well. Both of these transitions 
have been observed in experiments (Elder 1965; Vest & Arpaci 1969) and the linear 
stability theory has been used to  predict them. Owing to the simplicity of the base 
flow, the onset of instability of the flow in the conduction regime can be determined 
accurately (Gershuni 1953; Rudakov 1967; Birikh et al. 1972; Korpela, Goziim & 
Baxi 1973). This is not the case for the transition from the convection regime because 
of the uncertainty of the exact magnitude of the vertical temperature gradient. But, 
if this gradient is treated parametrically, much can be learned about the stability of 
this flow (Gill & Davey 1969; Hart 1971; Bergholz 1978). 

In  engineering applications the stability of these flows is important in determining 
the insulating capacity of the rectangular regions they occupy, for in the multi- 
cellular flow regime the increased heat transfer, as a result of a unit increase in the 
difference between the temperatures of the vertical walls, ought to  be larger than the 
corresponding change when the fluid flows in a unicellular manner. Although a rec- 
tangular enclosure is most likely to be found in practice, annular regions are also 
common and thus the stabili%y of convection in such regions is also of interest. 

In  this article results from a linear stability analysis of the flow in an annular enclo- 
sure with 8 heated inner wall are presented. The annulus is taken to be sufficiently tall 
that the flow will be in the conduction regime. Thus complications arising from a 
vertical temperature stratification are ignored and the emphasis is on the effect of 
the wall curvature on the stability. In addition to theoretical calculations, visual 
observations of the flow were made and photographs taken of the streaks left by 
smoke particles in air. 



Natural convection in a tall vertical annulus 727 

2. Formulation and solution 
Coneider the flow of a viscous fluid within an annular enclosure, as shown in figure 1, 

of height H ,  inner radius KR and outer radius R, with HIR, S 1, and H/L g 1,  where 
R, is the a.verage of the two radii and L is the width of the annular gap. The flow 
results from a temperature of the inner cylinder TI being higher than that of the outer 
one T,. A cylindrical co-ordinate system is chosen with the positive x axis in the direc- 
tion opposite to the gravity vector g. The temperature difference AT = T,-T2 is 
assumed sufficiently small so that the Oberbeck-Boussinesq approximation applies 
(Chandrasekhar 1961, page 16). Accordingly the kinematic viscosity v, thermal 
diffusivity a, and the coefficient of thermal expansion ,8, are constant and the work of 
compression and viscous dissipation can be neglected. 

For an infinitely tall annulus the base flow is parallel and can be readily obtained. 
The radial distribution of the axial velocity and temperature are given by 

- 
W _ -  u -  1 6 ( 1 - ~ ) ~  ( 1 - K z ) 2 + ( 1 - K 4 ) h K  

1 ([ (1 - K 2 )  (1 - 3K2)  - 4 K 4 h  K ] [(l-K)2(i)2-1 

and 

in which L = R( 1 - K )  is the width of the annular gap, U = g,8L2AT/v is the charscter- 
istic thermal velocity, and = T - T, is the difference between the fluid temperature 
and that of the outer wall. It was found convenient in later calculations to introduce a 
new radial co-ordinate 5 = [r - i( 1 + K )  R ] / L  which is measured from the mid-plane of 
the gap. The non-dimensiona.1 base velocity and temperature profiles are shown in 
terms of this co-ordinate in figure 2. 

Choosing, as in equations (1) and (2), U, AT and L as the scales for velocity, tempera- 
ture, and length and scaling time by L2/v and pressure by p U 2 ,  where p is the density, 
the governing equations can be cast in the following non-dimensional forms : 

v.q = 0, (3) 

%+G(q.V)q  = -GVp+T2+Vzq, 
at 

aT 1 
- at +C(q .V)T  = - P V2T. 

(4) 

In these equations q is the non-dimensional velocity and T the non-dimensional 
temperature measured relative to its value at  the outer wall. The non-dimensional 
pressure is measured above the hydrostatic value. The parameters G = UL/v and 
P = v /a  are the Grashof and Prandtl number respectively, and 2 is a unit vector in the 
positive z direction. 
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Subtracting the base solutions from equations (3)-(5) and linearizing the resulting 
equations yields 

V.q '  = 0, (6) 

aT' 8T' 1 - + GU, - + GDT(P. 9') = - V2T', 
at az P 
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subject to boundary conditions 

q' = T' = 0 at r = K / ( ~ - K ) ,  l / ( l - - ~ ) ,  ( 9 )  

in which a prime denotes that the variable is a perturbation on the base flow, which is 
denoted by a bar. As is conventional D = a/ar. 

In observing the flow only axisymmetric motions were seen. For this reason in what 
follows the disturbances are also assumed to be axisymmetric. Thus their spatial 
dependence can be written as 

( 1 0 )  

where 4' represents any of the dependent variables. Eliminating the pressure leads to 

a 
- (DD* - a') u + iaG W(DD* - 01') +- Dw-D2W u = -iaDT + (DD* - CC')'U, ( 1  1 )  

$'k) 2) t )  = $@, t )  exp @4, 

r l -  1 at 

E + i a ~ ~ ~ + ~ ~ ~ u  = - 1 ( D * D - ~ ~ ) T  
at P 

and 
u = D*u = T = 0 a t  r = K / ( ~ - K )  and l / ( l - ~ ) ,  ( 1 3 )  

where D* = D + l / r ,  and u = F. q is the amplitude of the radial perturbation velocity. 
The eigenvalue problem ( 1  1)-( 1 3 )  was solved by the Galerkin method. Following 

Walowit, Tsao & DiPrima ( 1 9 6 4 ) )  polynomials which satisfy the boundary condi- 
tions (1  3) were used as trial functions. These are 

T,(C) = (C2 - $1 P-l) (15) 

where 5 = r - $[( 1 + K ) / (  1 - K ) ] ;  thus r = K / (  1 - K )  and 1 / (  1 - K )  correspond to C = - -& 
and + S, respectively. Rewriting the equations ( 1  1 )  and ( 1 2 )  in terms of the co-ordinate 
5, substituting the expansions 

and 

into the resulting set, truncating each of the series to N terms, and requiring the 
residuals to be orthogonal to  the trial functions with the weight 

C+ 8 ( 1 +  K ) / ( 1 -  41 
yields the matrix equation 

A=)+ BX = 0. 
dt 

'In this equation X = {an, bn}T is the transpose of the coefficient vector, and A and B 
are matrices with complex elements resulting from the orthogonalization. The matrix 
eigenvalue problem (18) was solved by the complex QR algorithm. 
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3. Results 
In carrying out the computations by the Galerkin method success depends on how 

well the eigenfunctions can be approximated by a small number of terms in the series 
of trial functions. As was noted by DiPrima (1  955), in the absence of a critical layer the 
eigenfunctions do not oscillate rapidly so that the series can be truncated to only a few 
terms. This situation was encountered in natural convection in a Cartesian slot 
(Korpela et al. 1973) for low Prandtl numbers, for the instability then sets in as 
stationary convection. Eight-term expansion in that case was sufficient to determine 
the critical Grashof number to four significant figures. The convergence deteriorated 
with an increase in Prandtl number, for, unlike the case a t  low Prandtl numbers 
when the convergence slows with increased aG, for P > 1 the rate of convergence 
dependson how large the product aGPis.ForlargePrandtlnumbersinstabilityhasbeen 
found by Gill & Kirkham (1970) to set in as oscillations a t  a substantially lower value 
of Grashof number than at  low values of P. For this case ten terms were necessary 
to assure convergence to 0.5 yo of the actual critical Grashof number. 

With this experience on the calculation of the stability of natural convection in a 
rectangular cavity, the computations reported here for convection in an annulus were 
expected to lead to  nearly equally fast convergence. This was true except in a range of 
intermediate values of Prandtl number. In particular, in the range 

P < 1  and 15<P<1000 

twelve terms with the present set of trial functions was adequate for equally good con- 
vergence as in the study of natural convection in a rectangular slot. In the inter- 
mediate range I < P < 15, the convergence deteriorated rapidly and reliable results 
could not be obtained. 
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FIGURE 3 ( b ,  c.) For legend see p. 733. 

The neutral states for six values of Prandtl number and four or five inner to outer 
radius ratios are shown in figure 3. The neutral states for the radius ratio K = 0.99 
correspond closely to the values for the Cartesian case. Since at  low values of Prandtl 
number the temperature disturbances become unimportant the instability is sustained 
by energy being transferred to the disturbance from the base flow. This shear flow 
type of instability is also present in the inviscid limit owing to an inflexion point in the 
velocity profiles. Thus the neutral curves are open as C -+ 03, as shown. 
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From the results of Hart (1971) it can be concluded that for the flow here considered 
at high values of Prandtl number (figures 3d-f) more of the kinetic energy of the dis- 
turbance comes from the potential energy of the buoyancy field, although this is still 
less than that derived from the base flow. The neutral stability curves (figure 3 d )  for 
P = 15 show this buoyant mode as well as the shear type. For P = 35 the shear 
mode is still pa.rtially present but disappears from the graphs at  P = 100 for the values 
of a and G investigated. At P = 15 the radius ratio has a marked effect on both the 
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critical Grashof number and the wavelength of the unstable mode; for P = 35 and 100 
these are largely absent. The neutral curves are quite flat near the minimum and 
curiously the curve for K = 0.4 has a lower minimum than the curves for K = 0.2 and 
K = 0-6 when P = 35. 

The critical wavenumbers are shown in figure 4. The effect of curvature on the 
critical wavenumber at low Prandtl numbers is seen to be opposite to  that at P > 15, 
but except in the range 15 < P 6 50  and 0.8 < K < 1,  when the  wavelength of the 
critical mode can be as large as five times the width of the annular gap, for other 
values of P and K the variation of the critical wavelength with both P and K is rather 
weak and its value is approximately 2.5 times the gap width. 

The wave speeds a t  low and high values of Prandtl number are consistent with what 
has been found in the Cartesian case. In that situation the odd symmetry of the base 
flow suggests that the instability should set in either as stationary convection, or as a 
pair of travelling waves which could result in a standing wave pattern. Stationary 
multicellular convection has been found in the rectangular cavity for P < 12-7 and 
two waves travelling in opposite directions for P > 12.7. The low Prandtl number 
result is in agreement with experiments, but no experiments which would show a 
transition from the conduction regime for high Prandtl numbers have been carried 
out, for the reason that bhese experiments would require an aspect ratio of the order of 
a thousand. The two travelling waves which appear a t  the onset of instability have a 
wave speed which is close to the maximum base flow speed. The waves are the kind 
which arise from the critical layers. These layers are far apart, symmetrically located 
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about the vertical mid-plane of the cavity. Thus the two waves are unlikely to interact 
in a way which would result in a standing wave pattern. 

With the introduction of curvature the stationary cellular pattern, characteristic 
of low-Prandtl-number flows, begins to drift upward in the direction opposite to 
gravity. The speed of travel, shown in figure 5, is quite independent of the Prandtl 
number but increases as the radius ratio is decreased. For high Prandtl numbers one 
of the two oppositely travelling waves a t  the critical layers is damped a t  the onset of 
instability, and a single wave, again travelling in the direction opposite to gravity, 
remains. This is a consequence of the odd symmetry of the base solutions being des- 
troyed and the type of degeneracy which was present in the Cartesian case being re- 
moved by the curved walls. 

The Grashof numbers of the neutral states are shown graphically in figure 6. Their 
numerical values together with the critical wavenumbers and wave speeds are sum- 
marized in table 1 .  The effect of curvature in the low-Prandtl-number range is to 
stabilize the flow, for air by nearly a factor of two as K decreases from unity to 0.2. In 
the high-Prandtl-number range the opposite is true and the flow is destabilized as K 

becomes smaller, although a t  Pr = 100 the effect is very small. 
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4. Experiment 
For the purpose of observing the flow an annular cavity was constructed by placing 

an aluminium cylinder concentrically inside a Plexiglas one and both fitted with a 
common Plexiglas top and bottom. The cavity thus formed was 90.8 cm tall and 2.34 
cm wide, for an aspect ratio of 38.6. The outer diameter of the enclosure was 14.9 cm 
and the inner one 10.2 cm so that the radius ratio was 0.68. Three cylindrical heaters, 
each with separat,ely controllable level of power, were placed inside the aluminium 
cylinder. The cylinder itself was instrumented with fifteen 24-gauge iron-constantan 
thermocouples, each secured into its own well by aluminium cement. The thermocouple 
wells, which were deep enough to be within 0.05 cm of the outer surface of the 0.8 cm 
thick aluminium cylinder, were spaced uniformly 15.25 cm apart in the vertical direc- 
tions and 120" apart circumferentially. To maintain the walls a t  uniform temperature 
the bottom of the apparatus was insulated with 7.6 cm thick styrofoam. A 8.9 cm 
thick layer of fibreglass was used to insulate the top. The measured non-uniformity in 
the surface temperature was a t  most 0.6 "C. Three cardboard panels surrounded the 
apparatus to reduce the influence of air currents; the fourth side was left open for 
observations. 

A Carousel slide projector was used as a source of light to illuminate a vertical plane 
of the annulus. An attempt was made to orient the slit forming the sheet of light in 
such a way that the illuminated plane would also contain the axis of the annulus. 
The fluid particles were made visible by introducing cigar smoke into the annulus. 

In figure 7 (plate 1)  four photographs of the flow, taken with a Nikon-F 35 mm 
camera on Kodak Tri-X (ASA 400) film, are shown. The first photograph, with 
G = 7400, corresponds to the flow in the conduction regime before the onset of 
instability. In  the second photograph G = 9100. The flow consists of cells which are 
5.4 0.1 cm apart and drift upward with a velocity 0.76 ? 0.04 cm s-l. These values 
correspond to a non-dimensional wavenumber equal to 2-72 and a non-dimensional 
wave speed equal to 1.24 x As the Grashof number is increased to 12600 the 
flow becomes distorted as shown in the third photograph and the wavelength is larger 
than a t  the onset of instability. The flow is still regular whereas in the last photograph 
it is seen to become irregular (and also unsteady) as the Grashof number has been 
increased to  21 200. 

Two more photographs are included. In  figure 8 (plate 2) a detail of a cell, as it has 
reached the top end, is shown. The yardstick on the side provides a visual reference of 
the physical size of the cells and the apparatus. The cells as they reach the end region 
a t  the top are quickly destroyed. Away from the ends the flow is mainly vertical with a 
slight periodic variation in the amplitude of the vertical velocity. This periodicity, 
together with a small periodic transverse component of velocity, produces the cellular 
stream pattern. Upon reaching the end the main flow becomes two-dimensional and 
the cells disappear, leaving the streamlines in the end region only slightly distorted 
from what they would be if the cells were not present. This description is based not 
only on our observations of the flow but on numerical experiments which we will 
present in the future. 

The figure 9 (plate 2) is a photograph from the top end of the annulus. Although it is 
of poor quality, it is good enough to show that the flow is axisymmetric. Neither the 
thickness, nor the centre of the smoke band changes in the angular direction. The 

a4 F L M  99 
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outer band is the true image of the smoke; the inner one is its reflexion from the inner 
aluminium cylinder. 

5. Conclusion 
The stability of the conduction regime of natural convection in a vertical annulus 

has been predicted by using linearized equations. The flow, at low Prandtl numbers, 
was shown to undergo a transition to a multicellular pattern which drifts upward. 
Both the wavelength of the cells and their upward velocity are in good agreement with 
visual observations of the flow. When the gap width of the annulus becomes small in 
comparison to the mean radius the predictions agree also with those published for a 
vertical slot. At high Prandtl numbers the instability sets in as a wave which travels 
upward with the ascending flow near the inner cylinder, a t  the speed which is close to 
the maximum of the base flow. Experiments to verify this instability require an 
annulus of very large aspect ratio, and none have been carried out. The only experi- 
ments for high-Prandtl-number fluids in a vertical annulus for which instability has 
been observed are those of Elder (1965). He found toroidal cells as we did, but these 
were stationary. His results correspond to a transitior from a convection regime. 

The study here reported formed part of a Ph.D. dissertation of I. G. Choi. The sup- 
port of the National Science Foundation through grant ENG 76-18426 is gratefully 
acknowledged, as is the use of the Amdahl470 V/6-I1 computer of the Instruction and 
Research Computer Center of the Ohio State University. 
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FIGURE 7.  Mult.cellular convection in an annulus. (a )  G = 7400; ( b )  G = 9100; 
(c) G = 12600; (d) G = 31200. 

CHOI AND KORPELA (Facing p.  738) 
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FIGURE 8. End region of the cavity. 

FIGURE 9. View from the top of axisymmetric convection. 
CHOI AND KORPELA 

Plate 2 


